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1 A. Asok/ A. S. Merkurjev - Proof of the Mil-
nor conjecture

Recall that we constructed a group Hn+1,n(Č(X),Z(`)) that controls the kernel

of the map Hw+1,w
et (E,Z(`)) → Hw+1,w

et (E(Xα),Z(`)) that we want to show is
injective.

Remark 1.

1. From now on, ` = 2.

2. Reduced motivic cohomology will be denoted H̃∗,ast(X).

3. If no ceofficients are given, it is assumed they are Z/2.

Recall that we have operations

Qi : H̃p,q(X )→ H̃p+2i+1−1,q+2i−1(X )

1. Q2
i = 0

2. Q0 = B the Bockstein morphism H̃∗,∗(X ) → H̃∗+1,∗(X ) associated to
Z/2→ Z/4→ Z/2 (Consider the connecting homomorphism β̃ : H̃∗,∗(X )→
H̃∗+1,∗(X ,Z) associated with Z 2→ Z→ Z/2).

3. QiQj = QjQi.

Definition (Motivic Margolis homology).

M̃H
p,q

i = ker(Qi)/im(Qi)

The goal of today is to prove the vanishing of some Margolis homology
groups.

For any smooth scheme X, we can adjoin a disjoint base point and we get a
canonical morphism Č(X)+ → S0

F → C̃(X) (where S0 is two disjoint points).
Recall that if X has an F point, then C̃(X) is contractible.
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1.1 Warm-up

Suppose X is a smooth quadric. While X may be empty, X certainly has a
rational point after passing to a degree 2 extension.

Lemma 2.
M̃H

∗,∗
0 (Č(X)) = 0

Proof. If X has a point then it is clear. Assume X(F ) = ∅. Let L/F be a
quadratic extension such that X has an L point. Then we have a map XL → X
which induces a map C̃(XL)→ C̃(X).

H̃∗,∗(C̃(X),Z) // H̃∗,∗(C̃(XL),Z)
jj

and composition of the two maps is multiplication by 2. The reduced homology
is zero and so two times any element on the left is zero. Thus, this gives what
we want:

Z 2→ Z→ Z/2

induces a long exact sequence which splits into short exact sequences (because
multiplication by two is zero), and then a quick diagram chase finishes the
proof.

1.2 Interlude

There exists a characteristic class sd associated to the Newton symmetric poly-
nomial

∑
i t
d
i . Firstly, this is a natural transformation and so behaves well on

exact sequences, and secondly, sd(L) = c1(L)d for a line bundle L.

Definition. A νn variety (at 2) is a smooth proper variety X such that

1. dimX = 2n − 1

2. deg s2n−1(X) 6≡ 0 mod 4 (where s2n−1(X) is s2n−1 applied to the tangent
bundle of X).

A νn point of a variety Y is a morphism from a νn variety to Y .

Lemma 3. If X is a smooth quadric in Pn then deg(sn−1(X)) = 2(n+1−2n−1).

Idea of proof. Let i : X → Pn be the inclusion. We have short exact sequences

0→ TX → i∗TPn → i∗O(2)→ 0

which describes the tangent bundle of X and

0→ O → O(1)n+1 → TPn → 0

Corollary 4. If X is a smooth quadric in P2n then deg s2n−1(X) ≡ 2 mod 4,
i.e. X is a νn variety.
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Since we can find smooth subquadrics of X of dimension 2i− 1, then X has
νi points for all 0 ≤ i ≤ n.

Theorem 5. Suppose X is a smooth projective variety that has a νi point, then

the M̃H
∗,∗
i (C̃(X)) = 0.

Corollary 6. If X is a smooth quadric of dimension 2n−1 then M̃H
∗,∗
i (C̃(X)) =

0 for 0 ≤ i ≤ n.

Proof. The idea is to construct a contracting homotopy.
Step 1. Construct a map H̃p+2i+1−1,q+2i−1 → H̃p,q(Č(X)). To construct

this we will use duality. Recall that if X is a smooth projective variety of
dimension d there exists an integer n, a vector bundle V on X of rank n, and a
morphism fV : Tn+d → ThX(V ) such that

1. [V ⊕ TX ] = 0 in K0(X)

2. the map H2d,d(X) → Z induced by fV via the Thom isomorphism and
suspension isomorphism coincides with the usual degree map.

Consider the cone of the map fV : Tn+d → ThX(V ). Henceforth, X is
our smooth projective variety, and Y our νi variety and we have a morphism
Y → X. Let d = 2i − 1, the dimension of Y . There is a Thom class tV ∈
H̃2n,n(ThY (V ),Z) and it can be lifted to a unique class α in H̃2n,n(cone(fV )).
Cupping with α induces a map H̃p,q(C̃(X)∧cone(fV ),Z)→ H̃p+2n,q+n(C̃(X)∧
cone(fV ),Z). If we smash the exact sequence

Tn+d → ThY (V )→ Cone(fV )→ Σ1
sT

n+d

with C̃(X) we get a cofiber sequence

Tn+d ∧ C̃(X)→ ThY (V ) ∧ C̃(X)→ Cone(fV ) ∧ C̃(X)→ Σ1
sT

n+d ∧ C̃(X)

and we get a map H̃∗,∗(Σ1
sT
∧n+d ∧ C̃(X))→ H̃∗,∗(Cone(fV ) ∧ C̃(X)).

Lemma 7. ThY (V )C̃(X) is contractible (thus Cone(fV ) ∧ C̃(X)→ Σ1
sT

n+d ∧
C̃(X) is a weak equivalence).

Proof. This should just be writing down definitions as well as a huge diagram
and tracking the maps that appear.

Given the lemma, we get composite maps

H̃p,q(C̃(X),Z)→ H̃p+2n,q+n(Cone(fV )∧C̃(X)) ∼= H̃p+2n,q+n(Σ1
sT

n+d∧C̃(X))

giving
φ : H̃p,q(C̃(X),Z)→ H̃p−2d−1,q−d(C̃(X),Z)

Step 2. Claim: If x is in H̃p,q(C̃(X)) then x ≡ Qiφ(x)+φQi(x). Let γ be the
image of the canonical element of H̃p+2d+1,q+d(Σ1

sT
∧n+d) in H̃p+2d+1,q+d(cone(fV )).

It suffices to prove that γ∧x = α∧Qi(x) +Qi(α∧x). We compute Qi(α∧x) =
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Qiα∧ x+α∧Qi(x)+ some other terms of the form
∏
j<iQ : j(α)∧ x. Another

fact is that Qi kills Thom classes of vector bundles. One deduces that for j < i
we have Qj(α) = 0 and so we get

Qi(α) ∧ x = α ∧Qi(x) +Qi(α ∧ x)

We have to show that Qi(α) = γ.
So far we know Qi(α)∧x = α∧Qi(x) +Qi(α∧x) and we want to show that

Qi(α) = γ.
We have Qi = [β, qi], and Qi(α) = βqi(α) + qiβ(α) where qiβ(α) is actually

zero. It suffices to show that qi(α) cannot be lefted to a class in Z/4 coefficients.
Also, we have qi(tV ))sd(V )tV . When Y is a smooth projective quadric, Y has
no points over extensions of odd degrees, and this is equivalent to a statement

about H2n,n(Y )
deg→ Z → Z/2. Suppose qi(α) can be lifted to a class z in

motivic cohomology with Z/4 coefficients such that f∗V (z) = 0. The Y has a
point over an extension of odd degree X which contradicts our assumption that
deg ss(Y ) ≡ 2 mod 4.

Recall that the proof was divided into several steps.

Step 1. MH90(n) for fields F , 2-special with kn(F ) = 0.

Step 2. Reduction to the injectivity of a certain map Hw+1,w
et (F,Z(2)) →

Hw+1,w
et (F (Xα),Z(2)) whereXα is the quadric associated to qα = 〈〈a1, . . . , an−1〉〉 ⊥
〈−an〉 so dimXα = 2n−1 − 1.

Step 3. Reduction to the triviality of Hn+1,n(Xα,Z) (where X = Č(Xα)).

Step 4. Reduction to the triviality of H2n−1,2(Xα,Z).

Step 5. Proof that H2n−1,2n−1

(Xα,Z) is trivial.

Voevodsky had three main ideas, each of which would have been lifetime
acheivements for a mathematician.

1. Motivic cohomology, which fits very nicely with Milnor K-theory and étale
cohomology.

2. To use Č(X), which simplifies the cohomology greatly, but retains the
essential information.

3. Steenrod operations.

Define C̃(Xα) = X̃α. We want to compare the motivic cohomology of X̃α
with that of Xα.

Hp−1,q(F,A)→ Hp−1,q(Xα, A)→ H̃p,q(X̃α, A)→ Hp,q(F,A)→ Hp,q(Xα, A)

Lemma 8.
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1. Hp−1,q(Xα,Z) ∼= H̃p,q(X̃α,Z).

2. H̃p,q(X̃α,Z/2) = 0 if p− 1 ≤ q < n.

BL(q) i ≤ j < n Hi,j(Xα,Z/2) ∼= Hi,j
et (Xα,Z/2) = Hi,j

et (F,Z/2) = Hi,j(F,Z/2)

Take the standard short exact sequence Z 2→ Z→ Z/2, we get

H̃p,q(X̃α,Z)
inj // H̃p,q(X̃α,Z/2) //

β ((

H̃p+1,q(X̃α,Z)

inj

��
H̃p+1,q(X̃α,Z/2)

u ∈ H̃p,q(X̃α,Z/2) is integral if and only if βu = 0. βQi(u) = Qiβ(u) = 0
implies that Qi(u) is integral.

Proposition 9. Qn−2 ◦ · · · ◦Q2 ◦Q1 : H̃n+2,n(X̃α,Z/2) → H̃2n,2n−1

(X̃α,Z/2)
is injective.

Proof. Choose u such that Qn−2 ◦ · · · ◦ Q2 ◦ Q1(u) and prove by descending
induction that Qi◦Qi−1 · · ·◦Q2◦Q1(u) = 0. Suppose that we have Qi◦Qi−1 · · ·◦
Q2 ◦Q1(u) = 0 and we want to show that Qi−1 · · · ◦Q2 ◦Q1(u) = 0. We know
that MHi(X̃α) = 0 and so Qi−1 . . . Q1(u) = Qi(v) for v ∈ H̃n−i,n−i(X̃α,Z/2).
By the lemma this group is trivial.

H̃n+2,n(X̃α,Z/2) // H̃2n,2n−1

(X̃α,Z/2)

H̃n+2,n(X̃α,Z)

OO

// H̃2n,2n−1

(X̃α,Z)

OO

Hn+1,n(Xα,Z) // H2n−1,2n−1

(Xα,Z)

It remains to show that H2n−1,2n−1

(Xα,Z) is trivial. If we write d = 2n−1−
1 = dim Xα this group becomes

H2d+1,d+1(Xα,Z).

We have an exact triangle

Xα(d)[2d]→Mα → Xα(d)[2d+ 1]

where Mα is the Rost motive, which gives an exact sequence

H0,1(Xα,Z)→ H2d+1,d+1(Xα,Z)→ H2d+1,d+1(Mα,Z)
t→ H1,1(Xα,Z)
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We can compute

Hi,1(Xα,Z) ∼= Hi,1
et (Xα,Z) = Hi,1

et (F,Z) =

{
0 i = 0
F ∗ i = 0

The Rost motive Mα is a direct summand of M(Xα) and of M(Qα) where
Qα = Q(〈〈a1, . . . , an)〉〉) ⊃ Xα. We would like to understand H2d+1,d+1(X,Z)
and we know that d = dimX. This group is easier to deal with because it is a
border case. Recall that Hi,j(X,Z) = 0 if i > j + d. So we can use the Gerston
complex to get

H2d+m,d+m(X,Z) = coker

(
qx∈X(1)

KM
m+1F (x))→ qx∈X(0)

KM
m F (x))

)
= A0(X,Km)

The norm map sends the latter to KM
m (F ). So H2d+1,d+1(Mα,Z) is a direct

summand of H2d+1,d+1(Xα,Z) = A0(X,K1) and t is the restriction of the norm
map. So our exact sequence becomes

0→ H2d+1,d+1(Xα,Z)→ H2d+1,d+1(Mα,Z)︸ ︷︷ ︸
⊂A0(X,K1)

t→ F ∗

We will show that the norm map is injective.
If Xα = C a conic curve (this is the case n = 2) we need to show that the

sequence K2(F (C))→ qx∈C(0)
K1(F (x))

N→ F ∗ is exact. Milnor’s theorem if C
is split.

IfXα is isotropic thenM(Xα) = Z⊕M(X ′α)(1)[2]⊕Z(d)[2d] and soA0(Xα,K)
is a direct sum of three groups, the first two of which are zero, and the last is
isomorphic to F ∗.

Claim: The image of the norm map is D(φα) where φα = 〈〈a1, . . . , an〉〉.
Proof: Let x ∈ Qα be a closed point.

NF (x)/F (F (x)∗)=D((φα)F (x))

?
⊂ D(φα)

(φα)F (x) isotorpic, Knebusch’s norm principle.
Take φα(v). Fix a vector v0 such that φα(v0) = 1, then we can write any

vector as v = bv0 + w with w ∈ v⊥0 . We have φα(v) = φα(bv0 + w) = b2 − a =
N(b+

√
a) where a = −φα(w). SetW = Span(v0, w). We have Qα ⊃ Q(φα|w) =

Spec(F (
√
a)) = Q(〈1,−a〉). So φα(v) ∈ NF (x)(b+

√
a).
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